Modul dan Script [Pelatihan R]

A. Modul

Unduh modul klik disini


B. Script

Deskripsi Data

nilai = data_mk$Nilai
summary(nilai)
visualisasi <- function(x){
  par(mfrow = c(2,2))
  hist(x, main="Nilai MK", ylab="frekuensi", xlab=“nilai")
  plot(x, type= "l", main="Nilai MK", ylab="Nilai", xlab="Mahasiswa")
  pie(table(x), main="Pie Chart Nilai MK")
  boxplot(x, main="Box Plot Nilai MK")
  stem(x)
}
visualisasi(nilai)

Uji Perbandingan
t.test(x = data_perbandingan$Sebelum, y = data_perbandingan$Setelah, alternative = "two.sided", mu = 0, paired = TRUE, var.equal = FALSE, conf.level = 0.95)

Analisis Variansi

model1 = aov(Penjualan ~ Pemasaran, data_anova)
summary(model1)

Analisis Regresi
model2 = lm(data_regresi)
summary(model2)
Analisis Cluster
data = dist(data_cluster, method = "euclidean")
fit = hclust(data)        
plot(fit)
rect.hclust(fit, k=3, border="red")
Analisis Biplot
pca1 = princomp(data_biplot)
biplot(pca1)
Auto ARIMA
install.packages("forecast")
install.packages("lmtest")
library(forecast)
library(lmtest)
model_adw = auto.arima(data_arima, trace=TRUE)
coeftest(model_adw)
tsdiag(model_adw)
plot(forecast(model_adw))
Exponential Smoothing
install.packages("fpp2")   
library(fpp2)

mod1 <- ses(data_es[,1])
accuracy(mod1)
autoplot(mod1)

mod2 <- holt(data_es[,1])
accuracy(mod2)
autoplot(mod2)

mod3 <- ets(data_es[,1])
accuracy(mod3)
autoplot(forecast(mod3))

0 comments: